On-chip surface-enhanced Raman spectroscopy using nanosphere-lithography patterned antennas on silicon nitride waveguides.

نویسندگان

  • Pieter C Wuytens
  • Andre G Skirtach
  • Roel Baets
چکیده

A hybrid integration of nanoplasmonic antennas with silicon nitride waveguides enables miniaturized chips for surface-enhanced Raman spectroscopy at visible and near-infrared wavelengths. This integration can result in high-throughput SERS assays on low sampling volumes. However, current fabrication methods are complex and rely on electron-beam lithography, thereby obstructing the full use of an integrated photonics platform. Here, we demonstrate the electron-beam-free fabrication of gold nanotriangles on deep-UV patterned silicon nitride waveguides using nanosphere lithography. The localized surface-plasmon resonance of these nanotriangles is optimized for Raman excitation at 785 nm, resulting in a SERS substrate enhancement factor of 2.5 × 105. Furthermore, the SERS signal excited and collected through the waveguide is as strong as the free-space excited and collected signal through a high NA objective.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Silicon Nitride Waveguides for Plasmon Optical Trapping and Sensing Applications

We demonstrate a silicon nitride trench waveguide deposited with bowtie antennas for plasmonic enhanced optical trapping. The sub-micron silicon nitride trench waveguides were fabricated with conventional optical lithography in a low cost manner. The waveguides embrace not only low propagation loss and high nonlinearity, but also the inborn merits of combining micro-fluidic channel and waveguid...

متن کامل

Single mode waveguide platform for spontaneous and surface-enhanced on-chip Raman spectroscopy.

We review an on-chip approach for spontaneous Raman spectroscopy and surface-enhanced Raman spectroscopy based on evanescent excitation of the analyte as well as evanescent collection of the Raman signal using complementary metal oxide semiconductor (CMOS)-compatible single mode waveguides. The signal is either directly collected from the analyte molecules or via plasmonic nanoantennas integrat...

متن کامل

Plasmon optical trapping using silicon nitride trench waveguides

We theoretically demonstrate optical trapping using a silicon nitride (Si3N4) trench waveguide on which bow-tie plasmonic nanoantennas are employed for enhancing optical forces. The electric field tailing away from the waveguide is transformed and then enhanced by the plasmonic nanoantennas deposited on the waveguide surface. We show that, with gold bow-tie nanoantennas, the waveguide system ex...

متن کامل

Mode-Selective Surface-Enhanced Raman Spectroscopy Using Nanofabricated Plasmonic Dipole Antennas

Mode-selective surface-enhanced Raman spectroscopy (SERS) is demonstrated using plasmonic dipole antennas fabricated with electron beam lithography. An∼10× change of the relative enhancement between two different Raman modes is observed when the resonance frequency of the plasmonic antennas is tuned over the Raman modes by varying the geometrical parameters of the antennas, i.e., changing their...

متن کامل

Large-scale fabrication of protein nanoarrays based on nanosphere lithography.

Hexagonally patterned lysozyme nanoarrays have been assembled on silicon wafers by combining nanosphere lithography and surface silane chemistry using vapor and solution deposition processes. The patterned protein regions extend over cm sized regions, and the size of each island is approximately 120 nm for the solution-prepared template and approximately 60 nm for the vapor-prepared template. A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Optics express

دوره 25 11  شماره 

صفحات  -

تاریخ انتشار 2017